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Abstract-The laminar flow patterns and heat transfer for air contained in the enclosure formed between 
two vertical, concentric cylinders and two horizontal planes have been studied numerically. The inner 
cylinder and one of the horizontal planes are heated and rotated about the vertical axis ; the other horizontal 
plane and outer cylinder are cooled and kept stationary. This geometry simulates the gaps at the ends of 
the rotor of a small, air-cooled, vertically mounted electric motor. The results facilitate the thermal design 
of such a motor. 

The influences of geometry (described by the radius ratio R and aspect ratio A), Ra and Re on 
temperature and velocity distributions have been investigated. Solutions have been obtained for 
0.25 ,C A Q 4.0, 1.2 < R < 8.0, 10 Q Re < 300 and 10’ < Ra Q 105. It has been found that for low values 
of R and high values of Re the flow is dominated by centrifugal forces, whereas for high A and Ra buoyancy 
effects determine the flow patterns and, therefore, the heat transfer. Monocellular flow patterns have been 
found for the cases where one of these forces is dominant; otherwise two- or three-cell structures have 

been obtained. 

1. INTRODUCTION 

HEAT transfer in cylindrical cavities is of particular 
interest to industry in the design of various types of 
machinery which involve heating and/or cooling. An 

example of such equipment is a rotating electric motor 
which is heated by the bearing friction losses and the 
ohmic dissipation of electric energy in the windings, 
and is cooled by the convection of heat from the 
surface to the surrounding fluid. This process of heat- 
ing and cooling of the electric motor may induce 
uneven thermal stresses which can shorten the useful 
life of the machine. In order to improve the design of 
such equipment and hence minimize possible failures, 
a better knowledge of heat transfer from, and flow 
patterns inside the device is necessary. 

The annular cavities at the two ends of the rotor of 
a vertically mounted electric motor (Fig. la) are the 
critical regions around the rotor due to the presence 
of relatively higher temperature gradients ; the study 
of heat transfer and flow patterns inside these cavities 
is the subject of this paper. This annular geometry is 
formed by two vertical concentric circular cylinders 
and two horizontal planes, as shown in Fig. lb. The 
rotating inner cylinder of radius r: and surface tem- 
perature Ti represents the shaft of the heated electric 
motor surrounded by air and enclosed by the station- 
ary outer casing of radius rb and surface temperature 
TA (< T,‘) and the horizontal end plates. When the 
bottom surface of the cavity is heated and rotating, 
the cavity represents the gap between the upper end 
of the rotor and the casing (hereafter called the upper 
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annulus) ; however, with the upper surface heated and 

rotated, the cavity simulates the gap at the lower end 
of the rotor (hereafter called the lower annulus). The 
size of the enclosure is described by the dimensionless 
radius ratio R and aspect ratio A. 

This problem was first studied by de Vahl Davis et 

al. [l] who investigated numerically the effects of Ra 
and Re on the flow inside a vertical, cylindrical annu- 

lus with an aspect ratio of 1 .O and radius ratio of 2.0. 
No other study (experimental or theoretical) of this 
problem has been reported in the literature. However, 
similar problems have received some attention and 
are briefly reviewed here. 

Conlisk and Walker [2] looked at the forced con- 
vection in a rapidly rotating, vertical, cylindrical 
annulus, and investigated the effects of injection and 
suction on the flow pattern and heat transfer. The 
thermal boundary conditions considered by them 
were adiabatic inner and outer cylinders, and hotter 
upper end plate as compared to the lower one. Singh 
and Rajvanshi [3] reported the results of their ana- 
lytical study of heat transfer between rotating eccen- 
tric cylinders (each one moving at a different speed) 
with different radii, using T, > r,. Buhler and Oertel 
[4] studied the cell structure in rotating rectangular 
boxes by experimental and theoretical approaches. 
Similarly, Charmchi and Sparrow [5] and Sparrow 
and Charmchi [6] studied the heat transfer and flow 

pattern in the cavity between two concentric, vertical 
cylinders; the inner cylinder of smaller height (and 
diameter) was considered to have been placed at vari- 
ous axial locations. Lastly, Young and Ulrich [7] stud- 
ied mixed convective heat transfer from a vertical, 
heated cylinder in a cross-flow ; the heat transfer data 
were correlated by including the influence of Re, Ra 
and the aspect ratio of the cylinder. 
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NOMENCLATURE 

A aspect ratio, H’/L Greek symbols 

ck constants B’ volumetric coefficient of thermal 

Cb specific heat at constant pressure expansion 
F body force per unit mass A change of 
Fr Froude number, L’CY*/g’ 1-’ swirl velocity, v’r’ 

9’ gravitational acceleration !J’ dynamic viscosity 

Gr Grashof number, g’fl’L’3AT’/v’Z kinematic viscosity, $/p’ 

h’ coefficient of heat transfer !IY angular velocity of the rotating cylinder 
H’ height of the annulus 4’ angular coordinate 
k thermal conductivity P’ density 

L’ gap width, r:, - r: *’ stream function, equation (4) 

Nu Nusselt number, h’L’/k’ 0 dimensionless temperature [equation (3)] 

P’ pressure i’ vorticity. 

Pr Prandtl number, C&‘/k’ 

r’ radial coordinate Subscripts 

ri radius of the inner cylinder b boundary 
I 

r, radius of the outer cylinder inner cylinder 

R radius ratio, rb/r: ;: an integer (1 5 k 5 5) 

Ra Rayleigh number, PrGr L lower annulus 

Re Reynolds number, L’*Q’/v max maximum value 

S area 0 outer cylinder 

t’ time T total 

T temperature U upper annulus. 

U’ velocity in r’ direction 

Vf velocity in 4’ direction Other symbols 

W’ velocity in z’ direction dimensional quantity 
z’ axial coordinate. an average value. 

The present research was undertaken to continue transfer. The ranges of parameters considered in 
the work reported by de Vahl Davis et al. [I] by this study were 1.2 < R < 8.0, 0.25 < A < 4.0, 
studying the effects of geometry (i.e. A and R) at IO3 < Ra < IO’, and 10 < Re < 300. These are typical 
various Ra and Re on the flow pattern and heat of the prototype electric motor problems: a cavity 
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FIG. 1. The geometry and coordinate system. (a) Schematic diagram of an electric motor. (b) Schematic 
diagram of a vertical annular cavity. 



with a gap width of 10 mm, rotating at 500 r.p.m. and 
experiencing a temperature difference of 60°C across 
the annular gap operates at approximateIy Re = 300 
and Ra = 5 x lo3 which falls within the range of the 
parameters considered here. 

The computations involved solving the two-dimen- 
sional governing differential equations for laminar 
flow when expressed in terms of the derived variables, 
i.e. Jr, < and r ; the false-transient method with an 
ADI scheme was used. The differential equations were 
simplified using the Roussinesq approximation. 

2. MATHEMATICAL FORMULATION 

2.1. The governing di_ferential equations 
The flow inside the cylindrical cavity shown in Fig. 

1 can be mathematically described by the continuity, 
momentum and energy equations. These equations in 
their general form are parabolic (or. as t’ -+ co, may 
become elliptic), non-linear and coupled ; their ana- 
lytical solution is impossible and a full numerical 
solution is complicated and time consuming. Here, 
vertically mounted electric motors are considered so 
that the gravitational force is independent of 4 and the 
flow is two-dimensional. In addition, for air over the 
temperature ranges likely to be encountered, the fluid 
properties may be assumed constant except for the 
density in body force terms. The body forces con- 
sidered here are those due to gravitational buoyancy, 
and centrifugal and Coriolis accelerations. Also, the 
dissipation factor and work of compression are 
assumed to be zero. Therefore, the governing differ- 
ential equations in terms of the primitive variables 
are : 

adjar~ + aw’/azf + t/jr’ = 0 (14 

adjatr + daufjarf + dadjai 

= (~‘/~~)~: + (~‘/~~)~2~z~‘~a~‘2 

+ d(adlaf + aw’pr’yaz’ + 2(du’/ar’ 

- u’/r’)/r’] - ( ijp;pp’jar’ (lb) 

adjatf + dad/&’ + dao’pzf + (p’/&)u’v’/r’ 

= (~‘/~~)[~(~t~‘~~r’ - v’,/r’)/dr’ 

+ avjaf2 -+ (2/r’)(adj3r’ -d/f)] (14 

aw*jat’ -t dadjarf + w~dwTf/az’ 

= (p’jp;)~j - ( ijp:)apfjaz’ 

+ ($/p;)[2a’W’,/aP +a(au’jiiz’ 

+ aw’/&‘)/&’ + (i/r’)(M/&’ + &v’/ar’)] (14 

d7”‘pt’+dar/af+ dairfjazf 

= k’/(P:cb)[(l/r’)a(r’aT’i;r’)/ar’$a2T’/a-7’2] (le) 

where pi is the density of the fluid at a reference 
temperature (e.g. 7’:) and F’ is the body force per unit 

gravitational accelerations, respectively ; the Coriolis 
acceleration is represented by u’v’/r’ in equation (1~). 

A linear variation between density (p’) and tem- 
perature (T’) has been assumed : 

p’ = p;[l -/Y(r’--T;)]. (2) 

The above equations can be non-dimensionalized 
using the following scales : L’ for length ; l/G’ for 
time ; LX2 for velocity ; pA(L’Q’)2 for pressure ; and 
(Ti- 2-i) for temperature. It is convenient to use 
(T’- YO) instead of T’ so that the resulting dimen- 
sionless temperature (fI) will be in the range 0 < /3 < 1, 
i.e. 

B = (T’- 7”,):(T:- 1?*). (3) 

Equations (1 b) and (Id) are cross-differentiated and 
combined. Using the following definitions of $, r 
and 5 

u = -(i/r)aij@ (44 

w = (I/r) a$/& (4bi 

{ = &i& - aw/iir (4c) 

r = rv (44 

the non-dimensional differential equations are : 

2gpt + a(u[)/& - (2rjr3) aria2 + ii(w 

+ (GrFr/ReZ)(f/~3)(28i;T/a= + l3Bpz) 

- ( l/Re)[a2i/ar2 + Z25/az2 + (al/&)/r 

-</r’] - (Gr/Re’) a@/& = 0 (54 

z/at+ [C?(ruI-)/&l/r+ a(d-)iaz 

- (GrFrlRe~)u~r/~~ - ( 1/Re)[d2r,@r2 

-(X/&)/r+ a*rpz2] = 0 (5b) 

i = (- i/tg[a$b/az* -t a2+/ar2 - (a$/ar)/r] (5~) 

a~l~~+~a~/~r+ wtSf.S,lSz = (l/PrRe)[(a~/~r)/r 

+&+W +a28/azy. (5d) 

2.2. The boundary conditions 
Each boundary has been assumed to be impermeable 

and isothermal (different boundaries have different 
temperatures), and either moving at a constant angu- 
lar velocity or stationary. The two cases considered 
are described in Table 1. Case U is chosen to simulate 
the upper annulus while Case L represents the lower 
annulus. 

Table 1. Boundary conditions for temperature Band angular 
velocity 11 

Case 

U 

L 

mass : F; = v”/r’ and F; = g‘ are the centrifugal and 

Boundary 
r = r, Y = TO z=o z=H 

R= 1 n=o n=o CI=l 
@=l @=O t?=o @=I 

fi=l n=o ?2=1 n=o 
@=I 8=0 8= I O=O 
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At any boundary 4. RESULTS AND DISCUSSIONS 

$s = constant and (a$/&), = 0 (6) 
Numerical results were computed for the following 

values of the relevant parameter :* 

where n is the normal coordinate. In a simply- 
connected closed system the value of $,, is arbitrary 
and is taken as zero. 

The boundary condition for the swirl velocity I is 

R = 1.2, 1.5, 2.0,4.0 and 8.0 
A = 0.25, 0.5, 1.0, 2.0 and 4.0 

Ra = 103, lo4 and lo5 
Re = 10,25, 50,75, 100,150,200,250 and 

300. 

Ib = r2Rb. (7) 

From equations (5~) and (6) the boundary vorticity 
lb is 

ib = - l/r@‘$/&?),. (8) 

The numerical implementation of this is an extension 
of the Woods formula [8]. At r = ri, for example, it 
becomes 

All solutions were found for Pr = 0.7 and Fr = 0. 
The latter condition was chosen because numerical 
calculations [l] had indicated that the solutions stud- 
ied here in the aforementioned ranges of Ra and Re 
are independent of Fr. This assumption eliminates the 
buoyant component of the centrifugal and Coriolis 
accelerations [see equation (5)]. 

4.1. Flow structure 

ii, = - 3$J[Ar2(r, + Ar/4)] 

- i2(r,/2+ Ar/4)l(r, +Ar/4) (9) 

in which the subscript 2 refers to the first internal 
mesh point. 

3. SOLUTION PROCEDURE 

The finite-difference forms of the dimensionless 
differential equations use central difference formulae 
for spatial derivatives, and a forward difference for- 
mula for the time derivatives. The resulting equations 
were solved by the Samarskii-Andreyev ADI scheme 
[9] using the false-transient technique [lo], chosen for 
its fast rate of convergence. This technique involves 
the introduction of a fictitious time derivative &b/at 
to equation (5~) and a relaxation factor to the time 
derivatives in all equations. These factors can be 
adjusted to under- or over-relax the computations as 
necessary to achieve and to accelerate convergence. 

4.1.1. Upper annulus. The major forces which deter- 
mine the flow pattern in the upper annulus are : (1) 
the gravitational buoyancy force [Gr/Re2ae/ar in equ- 
ation (5a)] which causes the fluid to rise along the 
inner cylinder and move outwards along the upper 
boundary, and (2) the centrifugal force [2r/r3X/dz 
in equation (5a)] which pushes the fluid outwards 
from the inner cylinder along the rotating bottom 
surface, thereby creating an opposing motion. 
Because of the opposing effects of these forces, if one 
is much stronger than the other, a monocellular flow 
pattern would be generated. However, when these 
forces are of the same order of magnitude, a two- or 
three-cell flow pattern will be found. Some of the 
many computed flow patterns are presented in Figs. 
26. The axis of the annulus is located off the left- 
hand side of each diagram, which shows the right- 
hand half of a vertical cross-section of the annulus. 

The number of grid nodes for the geometry with 
A = 0.5, 1 .O and 2.0 were 31 in each of r and z direc- 
tions. However, for A = 0.25, 61 nodes in the r direc- 
tion and 16 in the z direction were used ; for A = 4.0, 
these numbers of nodes were interchanged. An 
attempt has been made to choose the number of nodes 
in such a way that the resulting grids were of approxi- 
mately square shape ; this was found useful for achiev- 
ing higher accuracy. 

The converged solutions reported herein took, in 
general, from about 100 to 2000 iterations ; the CPU 
time per iteration was about 1.3 s on a CDC Cyber 
171. The convergence criterion used was that the sum 
over the entire domain of the difference between the 
current value of each dependent variable and that in 
the previous iteration, normalized with the maximum 
value of the variable, was < 10m3. 

The effects of variation of R on the flow pattern for 
constant A, Ra and Re is shown in Fig. 2. An increase 
in the radius ratio R brings the cavity closer to the 
axis of the annulus and diminishes the influence of the 
centrifugal force. As a result, the counterclockwise 
(centrifugally dominated) flow is changed to a clock- 
wise (buoyancy dominated) flow through a succession 
of multicellular flow patterns. The maximum and 
minimum values of the stream function for the various 

cases, shown in these diagrams, suggest that the orig- 
inal centrifugally driven cell of Fig. 2a loses momen- 
tum as the natural convective cell is developed ; the 
resulting buoyancy driven flow of Fig. 2e is an order- 
of-magnitude weaker than that of Fig. 2a. This 
reduction in the values of the stream function is 
believed to be due to the counter effects of these oppos- 
ing cells, which is also reflected in the CPU time 
required to achieve convergence : the cases with mul- 
ticellular flow patterns took, in general, three to six 
times more iterations than the monocellular flows. 

*Not all possible combinations were used. 

Figure 3 shows the flow structure for various values 
of A, keeping R, Ra and Re constant. By increasing 
A, the area of the heated inner cylinder which gives 
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(a) R = 1.2 

L05,-1.8X10-*1 

streamlines 

(b) R = 1.5 

(0.18,-0.05) 

(c) R = 2.0 

to.o5,-0.05) 

(d) R = 4.0 

{O.Ol,-0.06) 

(e) R = 8.0 

{2.5x10-*,-0.05) PI 0 0 

isotherms 

FIG. 2. Streamlines and isotherms for the upper annulus at Re = IO*, Ra = lo4 and A = 1.0. Numbers 
within { } represent the maximum and minimum stream function values, respectively. 

rise to the buoyancy force increases. As it can be 
seen in Fig. 3, the counterclockwise flow structure is 
changed to a mostly clockwise flow pattern by increas- 
ing A from 0.25 to 4.0. Apparently, increasing R from 
1.2 to 8.0 (about seven-fold) produces a larger change 
in the flow pattern than the 16-fold increase in A; 
however, the same increase in A results in an increase 
in the $ values whereas the seven-fold increase in R 
produces a decrease in the stream functions. 

In order to study the influence of Re and Ra on the 
flow structures, a single geometry with A = 0.25 and 
R = 2.0 has been considered. Figures 4-6 show the 
streamlines for this geometry. In Fig. 4a, the flow 
field for Re = 10 and Ra = lo3 shows the combined 
influence of the buoyancy and centrifugal forces. The 
central counterclockwise cell is due to the centrifugal 
force whereas the clockwise cells at the ends of the 
cavity are due to the buoyancy forces generated by 
the horizontal temperature gradient near each end of 

the cavity, i.e. by the heat transferred from the heated 
inner cylinder to the cooled upper wall, and from the 
heated lower wall to the cooled outer cylinder. The 
cell near the outer cylinder is stronger than the other 
two cells. Although this seems puzzling, a calculation 
indicates that the heated area available to drive the 
cell near the outer cylinder is larger than that for the 
cell near the inner cylinder (assuming the cells are of 
equal size); the relative difference in the strength of 
these cells is a function of R: the larger is R, the 
stronger is the cell near the outer cylinder. As Re is 
increased (Fig. 4b), the clockwise eddies disappear 
and the centrifugal force dominates the field. 

For Re = 10 and Ra = lo4 (Fig. 5a), the influence 
of natural convection increases as reflected by the 
size of the clockwise cells and the magnitude of the 
stream functions; the counterclockwise cell is com- 
paratively weak and at the verge of disappearance. 
However, an increase of Re enhances the centrifugal 
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pj 
(a) A = 0.25 

(c) A = 1.0 (d) A = 2.0 

0 0 

0 0 

(b) A = 0.50 

{0.048,-0.002) 

0 1 ,‘, 0 0 

{ 3.05,-0.05 1 10.08,-0.2 1 

FIG. 3. Streamlines for the upper annulus at Re = IO’, Ra = 10 ’ and R 

force and this cell subsequently dominates the flow 
field (Fig. 5b). The flow patterns for Ra = 10’ are 
shown in Fig. 6. For Re = 10 (Fig. 6a), the natural 
convective eddies are stronger than the centrifugal 
cell. The stream function values and patterns remain 
unchanged when Re is increased to 100. However, 
for Re = 300 (Fig. 6b), the flow is generally due to the 
centrifugal effects. Comparison of the flow patterns 
for a constant Re and the various values of Ra indi- 
cates the increasing influence of natural convection as 
Ra changes from lo3 to 10’. 

In general, increasing Ra and/or A and/or R 

(a) Re = 10 

( 7~10-~,-2xlO-~] 

(b) Re = 300 (b) Re = 300 

Io.03,o.ol I0.03,0.01 

FIG. 4. Streamlines for the uper annulus for Ra = IO’, 
A = 0.25 and R = 2.0. 

FIG. 5. Streamlines for the upper annulus at Ra = 104. 
A = 0.25 and R = 2.0. 

(e) A = 4.0 
Io.o9,-0.32 1 

2.0. 

strengthens the buoyancy-driven cells while an in- 
crease in Re promotes the dominance of the flow 
field by the centrifugal force. 

It was mentioned earlier that the solutions for the 

cases with multicellular flow patterns are found to 
require more computer time than the monocellular 
flow problems to achieve convergence. For example, 
the solution presented in Fig. 2b took about 2700 
iterations as compared with Fig. 2a which converged 
after 338 iterations. It is believed that the numerical 
difficulty encountered in obtaining a converged solu- 
tion for the former case is due to the extreme sen- 

(a) Re = 10 

{ 4x1o-4 ,-2.8~10-~ 1 
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(a) Re = 10 

(O-12,-0.4) 

(b) Re = 300 

Io.03,-l..5X10-3) 

FIG. 6. Streamlines for the upper annulus at Ra = 105, 
A = 0.25 and R = 2.0. 

sitivity of the flow to the opposing and almost equal 
forces, and to the transient nature of the solution 
process. An increase in Ra (Ra = 3 x 104) resulted in 
a converged solution in 365 iterations with a single 
clockwise cell. Similar problems in obtaining a con- 
verged solution were also encountered with the case 
of A = 1.0 and R = 1.2 at the point of transition of 
the flow from clockwise to counterclockwise. 

Converged solutions could not be obtained at 
Ra= 105forA = l.OandRzS.OatRe> 150;orfor 
A = 4.0 and R = 2.0 at Re = 300. This is thought to 
be due to the instability in the flow field which may 
have been caused by the inception of the transition of 

(a) A = 1.0, R = 1.2 

fo.o,-0.9) 

(b) A = 1.0, R = 8.0 

Io.o,-0.03) 

the flow from laminar to turbulent regime ; the present 
study considers laminar flows only. 

4.1.2. Lower annulus. Unlike the upper annulus, 

the centrifugal and buoyancy forces in the lower annu- 
lus are supportive, giving rise to a clockwise flow 
field of one or two cells. The two-cell flow fields are 
generally found for low Re with extreme values of A 
(i.e. Re = 10 and A = 0.25 or 4.0) ; an almost stagnant 
region was seen to exist between the cells. At higher 
values of Re, however, the two cells were found to 
have merged, creating a single eddy pattern. Figures 
7 and 8 show the flow patterns for a few of the cases 
studied here. 

No significant change in the streamlines of Figs. 7a 

and b is apparent as R is increased from 1.2 to 8.0 (at 
Re = 100 and Ra = 104) except for the shift of the 
centre of rotation towards the upper right corner 
creating a nearly stagnant region near the lower 
plate; this change of R reduces the values of the 
stream function by an order of magnitude. Figures 7c 
and d show the effect of variation of A on the flow field. 
As A is increased from 0.25 to 4.0, the basic flow 
pattern remains unchanged while an order-of-mag- 
nitude increase in the stream function is observed. 

Because of the high value of A in Fig. 7d, the fluid 
near the lower plate is almost stationary. 

The two-cell flow fields mentioned earlier are shown 

in Fig. 8a ; both eddies are moving in the same direc- 
tion (clockwise), creating a very slow moving fluid 
region in between. By increasing Re, the two cells 
merge and form a single eddy structure, as shown in 
Fig. 8b. It is believed that by reducing R a similar 

(c) R = 2.0, A = 0.25 

Io.o,-0.0121 

(d) R = 2.0, A 

{O.O,-0.28) 

= 4.0 

FIG. 7. Streamlines for the lower annulus at Re = 10’ and Ra = 10“. 
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I-l 
(a) Re = 10,Ra = lo3 

cO.O,-0.0036} 

(b) Re = 300, Rd = 10~ 

{o.o,-0.03) 

FIG. 8. Streamlines for the lower annulus with A = 0.25 and 
R = 2.0. 

change in the flow pattern can be found. The flow 

patterns of Figs. 8a and b did not significantly change 
(except for the value of cl/) when Ra was increased to 

10s. 
It is interesting to note that by increasing Re from 

10 to 300 at Ra = lo’, an order-of-magnitude rise in 
the maximum stream function (i,..,,) is obscrvcd. In 

contrast, such an increase in Re at Ra = lo’, reduces 
$,,,.., by an order-of-magnitude. An examination of all 
of the solutions for the lower annulus indicates that 
in most cases $ decreases with Re; this pattern has 
also been reported in ref. [l]. Although this is contrary 

to what is expected, it should be noted that $ has been 
non-dimensionalized by L’3R’ = ReL’v’. Therefore, 
when $ decreases with Re, it does not necessarily 
imply a decrease in I//, the dimensional stream 

function. For example, assuming L’v’ remains 
unchanged, I&,, for the case depicted in Fig. 8b 
(Re = 300) is, in fact, 3.6 times greater than that 
shown in Fig. 8a (Re = IO). Hence, an increase in Re 

is accompanied with a rise in the flow rate. This point 
is further substantiated by the rise in Nu, (not 
reported here for the sake of conciseness) found in 

this study. 

4.2. Heat transjiv 
The parameter of practical importance in the ther- 

mal design of electric motors is the heat transfer, 
which is measured by the average Nusselt number. 
Nu. Using i, o, t and b to refer to the inner, outer, top 
and bottom surfaces of the cavity respectively, Nu can 

be computed by 

Nu, = -2(R- l)/(R+ 1) (50/&) _~ o rdr (lOa) 
(1) (;=A) 

NM, =(-l/A) 4(30/&),-r, d; 
s 

(lob) 
(0) 0 lr ,,,I 

where 

Nu, = t?;L’lk’ (lOc) 

on any surface j and 

I;; = -k;/{(T’- T;)S;} 
s 

(C/&r’),dS;. (11) 
s; 

The total heat transferred from the hot surfaces to the 

cold surfaces (which must be equal) for each of the 
upper and lower annuli can be found by calculating 

the total average Nusselt number given below : 

For hot surfaces : 

NU 
(I”, 

= [A/(R- l)]Nu,+[(R+ l)/(R- 1)/2]Nu b. 
ItI 

(12a) 

For cold surfaces : 

NM 
ZJ 

= [RA/(R- l)]Nu,+[(R+ I)/(R- 1)/2]Nu t . 
Ih) 

Wb) 

Nu, and Nu,_ are based on k which is formulated to 
depend on a fictitious area of 2xL” and the tem- 
perature difference of (T,‘- r:). The overall heat 
transfer from the electric motor (Nu,) is the algebraic 
sum of Nu,, and Nu,. 

In order to see the effects of geometry on heat 
transfer, Nu, and Nub for the upper annulus at 
Re = lo2 and Ra = lo4 with various values of A and 
R are plotted in Fig. 9. Nu,, in general, decreases at 
first and then very slowly increases with increasing R ; 
however, increasing A results in a decrease in heat 
transfer except for A > 1 where a rise in A is 
accompanied by higher Nu, when R > 3.0. This behav- 
iour is compatible with the flow structures for the 

various cases : for A 5 1, the flow changes from a 
predominantly monocellular pattern to a multicellular 
structure by increasing R ; whereas for A > 1, this 
change in the flow pattern is reversed. The mul- 
ticellular flows are less efficient in transferring heat 
due to the opposing direction of the eddies which 
thickens the thermal boundary layer and thus reduces 
the temperature gradient and heat transfer. The trend 
exhibited by Nu,, in Fig. 9 is self-explanatory : it con- 
sistently increases with increasing R and decreasing 
A except at high values of A where Nu, is almost 

independent of A. 
The total heat transfer for the upper annulus for 

various values of A and R are given in Fig. 10. Nun 
(solid lines) decreases with increasing R and decreas- 
ing A when A 2 1 and increasing A when A < 1, 
except for the R = 1.2 case ; NuL profiles (not shown 
in Fig. 10) are virtually the same as those for Nun. 
The overall heat transfer, NuT (broken lines), shows a 
very similar trend. The effect of reducing R from 
around 4 to 1.2 on NuT is almost a IO-fold increase 
while that due to increasing A from 1.0 to 4.0 is 
comparatively very small. 

Nu, and Nu, curves for other values of Ra and Re 
showed similar trends to those given in Fig. 9 and 
therefore will not be repeated here; these results are 
available in ref. [ 1 I]. However, the overall heat trans- 
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fer data for the upper annulus are plotted in Fig. 1 I. 
It is evident that an increase in both Ra and Re is 

accompanied by a rise in the heat transfer. At higher 
values of Re, the influence of natural convection 
diminishes as the different Ra curves converge to a 
single line for each geometry. 

The drop in Nuu which is apparent in the NM profiles 
of Fig. 11, especially for A = 1 .O and R = 1.2, is due 
to the interaction of the buoyancy and centrifugal 
forces. Nu,, is minimum when the natural convective 
clockwise cell is changed as a result of an increase in Re 

to a centrifugally driven counterclockwise flow ; simi- 
lar profiles are reported in ref. [1] for A = 1 .O and 
R = 2.0. The decrease in Nu, for A = 1 .O and R = 1.2 
is more pronounced because this reversal of the direc- 
tion of the flow takes place over a comparatively nar- 
rower range of Re; for other geometries, the transition 
requires a significant increase in Re and, therefore, a 

wider range which is not covered here. For geometries 
with large values of R. the inner cylinder is much 
smaller than the outer one and therefore the influence 
of rotation is not very significant. 

The difference between the heat in and out of the 
system for both upper and lower annuli was found to 
increase with the radius ratio ; the discrepancy was 
calculated to be mostly under 10%. Further mesh 
refinement would provide a better-energy balance. 

A plot of NuT for the solutions obtained in this 
study are given in Fig. 12. The shape of the Nu7 profile 
is very similar to that for NM, but the values of the 
former are about twice as large as those of the latter 
since Nu, is approximately the same as NM, despite 
the difference in the flow patterns for the upper and 
lower annuli which were reported earlier. 

The data presented in Fig. 9 show that the variation 
in Nu profiles due to changes in A, R, Ra and Re is 
not very significant. However, the local heat transfer 
profiles given in Fig. 13 show that the motor experi- 

ences very high temperature gradients at the ends of 
the rotor and at the edges of the heated horizontal 
surfaces. Therefore, for design purposes, a knowledge 
of the local heat transfer distribution is necessary. A 
motor with homogeneous physical properties may fail 
when exposed to such variable thermal conditions ; 
this cannot be accounted for if only average heat 
transfer data were available. It should be added that 
the significant variation in the Nu, values of Fig. 13 
can be explained by the flow structures of the various 

cases presented earlier in Fig. 2; the monocellular flow 
driven by the centrifugal force (Fig. 2a) is more 

efficient than those generated by the buoyancy force 
(Fig. 2e) and by buoyancy and centrifugal forces (Fig. 
2d). However, no large variation in Nz+ by varying R 
is observed as shown in Fig. 13b. 

An attempt has been made to correlate all of the 
heat transfer data obtained in this study. Different 
equations were found to be necessary to describe 
properly the heat transfer for the various surfaces and 
geometries as shown in Figs. 9-13 ; for the sake of 
conciseness, these equations will not be discussed here. 
However, a single correlation equation of the general 
form given below was developed here to calculate the 
heat transfer for design purposes : 

Nu= ~,Re’ICr”[l+IA-II]‘~(R-l)‘.. (13) 

The values of the constants cl-cc for NIL,,, Nu, and 
NM, are listed in Table 2. 

Table 2. Constants cIpcg in equation (13) 

Cl c2 c 3 C? c 5 

Nu, 1.000 0.148 0.206 0.218 -0.669 
N% 1.000 0.165 0.197 0.187 -0.670 
KG7 1.000 0.195 0.254 0.224 -0.669 
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FIG. 12. Nu, distribution for various values of A, R, Ra and Re. 

The set of equations described by equation (13) and 
Table 2 is in general agreement with the heat transfer 
profiles of Figs. 10 and 12, i.e. Nu increases with both 
Ra and Re, and decreases with increasing R and 
decreasing A when A < 1 and increasing A when 
A > 1. In order to show the scatter of the numerical 
heat transfer data around equation (13), Nz+ found 
in this study and those calculated by equation (13) are 
plotted vs the right-hand side of this equation in Fig. 
14. As it can be seen, no general pattern between the 
different sets of data is apparent which shows the 
degree of complexity of the development of a single 
correlation equation that can accurately represent 
these data. However, the above equations are con- 
sidered to be reasonably accurate for estimating the 
heat transfer in the design of vertical rotating annuli 
at this time. 

5. CONCLUSIONS 

Numerical heat transfer profiles and flow patterns 
were found for various rotating vertical annular cavi- 
ties in the ranges 0.25 5 A 5 4.0, 1.2 5 R s 8.0, 
10 I Re I 300 and lo3 5 Ra 5 105. It was found that 
theflow pattern in the upper annulus is determined 
by the relative magnitude of the gravitational buoy- 
ancy and centrifugal forces: if either of the forces is 

dominant, a monocellular pattern was found ; other- 
wise the flow structure was multicellular. For low 

values of R and high values of Re, the centrifugal force 
was predominant and a counterclockwise flow existed. 
On the other hand, for high values of A and Ra, a 
clockwise flow structure generated by the buoyancy 

force was found to exist. For the lower annulus, both 
forces generated a clockwise flow field of one- or two- 
cell structures; the latter pattern was found only for 
the cases with extreme values of A. 

The heat transfer profiles did not reveal a significant 
change in Nu values for the various surfaces when R 

was varied at constant Ra and Re; variation in A, 

however, produced a three-fold change in NM. In con- 
trast, Nu7 was found to decrease by an order of mag- 

nitude when R was changed from 1.2 to 8.0. Nz+ was 
found to increase with decreasing A when A < 1 and 
with increasing A when A > 1, but not as strongly as 
with decreasing R. Increasing Ra and/or Re, in 
general, produced higher heat transfer, in agreement 
with the general theory of convective flows. 

Profiles of local Nu showed a high heat flux and 
consequently temperature gradient at the ends of the 
rotor and the edges of the horizontal planes, thereby 
creating non-uniform heat transfer distributions. 
Hence computations of these local heat transfer fields 
are necessary for the better design of the electric 
motors. 
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FIG. 14. Comparison between the present numerical heat transfer data and those found via equation (13). 
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CONVECTION MIXTE DANS UN ESPACE ANNULAIRE VERTICAL 

Rbnm~On &die numeriquement les configurations d’ecoulement laminaire et le transfert thermique 
pour de I’air enferme dans une enceinte par deux cylindres concentriques et verticaux et deux plans 
horizontaux. Le cylindre inttrieur et un des plans horizontaux sont chauffts et tournent autour de I’axe 
vertical: l’autre plan et le cylindre exterieur sont refroidis et sont fixes. Cette geomttrie simule I’espace 
entre les extremites du rotor, d’un petit moteur Clectrique refroidi par air et month verticalement. Les 
rtsultats facilitent la conception d’un tel moteur. On a etudit les influences de la geometric (rapport des 
rayons R et rapport de forme A), de Ra et Re sur les distributions de temperature et de vitesse. Des 
solutions sont obtenues pour 0.25 < A < 4, 1.2 < R < 8. 10 < Re < 300 et 10’ < Ra < IO’. On a trouve 
que pour les valeurs faibles de R et les grandes valeurs de RE, l’ecoulement est domine par les forces 
centrifuges, tandis que pour A et Rm grand les effets gravifiques determinent les configurations d’ecoulement 
et, par suite, le transfert thermique. Des configurations monocellulaires ont et& trouvees dans les cas oti 

I’une de ces forces est dominante; autrement on obtient des structures a deux ou trois cellules. 

GEMISCHTE KONVEKTION IN VERTIKALEN ZYLINDRISCHEN RINGSPALTEN 

Zusammenfassung-Die laminaren Striimungsformen und die Wirmetibertragung in dem luftgefiillten 
Spalt zwischen zwei vertikalen, konzentrischen Rohren und zwischen zwei horizontalen Ebenen wurde 
numerisch untersucht. Das innere Rohr und eine der horizontalen Ebenen sind beheizt und rotieren urn 
ihre vertikale Achse; die andere horizontale Ebene und das luI3ere Rohr werden gekiihlt und sind ortsfest. 
Diese geometrische Anordnung bildet die Spalte an den Enden des Rotors eines kleinen, luftgektihlten und 
vertikal befestigten Elektromotors nach. Die Ergebnisse erleichtern die Beriicksichtigung thermischer 
Belange bei der Gestaltung eines solchen Motors. Der EinfluW der Geometrie (beschrieben durch das 
Radienverhaltnis R und das Verhaltnis A), der Rayleigh- und der Reynolds-Zahl auf Temperatur- und 
Geschwindigkeitsverteilung wurden untersucht. Man erhalt Losungen fur 0.25 < A < 4.0, 1.2 < R < 8.0, 
10 < Re $ 300 und 10’ < Ra < 105. Es ergibt sich, da13 fur niedere Werte von R und hohe Werte von Re 
die Striimung durch Zentrifugalkrafte beherrscht wird, wahrend fur groRes A und Ra Auftriebseffekte die 
Striimungsformen und daher such die Warmeiibertragung bestimmen. Einzellige Striimungsformen werden 
vorgefunden fur die Falle, bei denen eine dieser Krafte vorherrschend ist; sonst erhalt man zwei- oder 

dreizellige Strukturen. 

CMEIIIAHHAII KOHBEKHMJI B BEPTWKAnbHOM IJMJIMH~PMYECKOM KAHAJIE 

AHHOTaWIn-%iCJIeHHO II3y'IaIoTCK peXWMbI JIaMAHapHOrO Te'leHIIII II TenJIOO6MeHa nna Bosnyxa, 

HaXOLIlIIIerOCR B 3aMKHyTOM o6aeMe, 06pa30BaHHOM LIByMs BepTIIKaJIbHbIMII KOHIIeHTpA'IeCKIIMti 

uenawpabw A n~y~s ropII30HTanbHbIMII ~~OCKOCTKMII. BHYT~~HHII~~ ~WJIUH~~ II oma u3 nnocKocTefi 

HarpeBaIOTCII A BpaIIIabDTCR BOKpyr BepTIIKaJbHOi! 0CII;npyraX rOpII30HTUbHaK nJIOCKOCTb II "apym- 

HbIti LWIHHnp OXJIaWIaloTCSI II 0CTaK)TCR HenOnBWKHbIMA. TaKaa I'eOMeTpWI MOneJIApyeT 3a30pbI Ha 

KOHUaX pOTOpaHe6oJIbIIIOro BepTIlKanbHOyCTaHOBJIeHHOrO 3JIeKTpOnBIIraTeJIII CB03nyIII"bIMOXJIa,Kne- 

HAeM. Pe3y,IbTaTbI IICnOJIb3yIoTCK npll TennOBOM npOeKTI,pOBaHIIII TaKOrO PBUraTeJIll. MCCJIenyeTCK 

BnIIIIHAe reOMeTpIII4 (3anaBaeMOe OTHOIIIeHBeM panEIyCOB R A OTHOIIIeHUeM BbICOTbI K IIIApIIHe A), A 
wcen Ra II Re Ha pacnpenenemia TeMnepaTypbt n CKO~OCTII. nonyreHbI peIIIeHwI MR 0.25 <A f4,0, 
1,2< R < 8,0, lO$ Re< 3OOa 10s < Rai 10’. HaBneHo,q~o n.na ManbIx 3HaqeHIG R H 6onbmax Re 
Ha TeYeHIle OKa3bIBaIoT BnAIlHBe ueHTpo6eaHbIe CUnb1,~ TO Bpe~n KBK nml6onbmax A li Ra nOnbeM- 
HbIe +$eKTbI OnpenenIIIOT pe)KIIMbI TeYeHBK II TenJIOO6MeHa. Bcnyqarx C npeo6nanaHseM yKa3aHHbIX 

C&In 06HapyxeHbI OLlHOSI'IeHCTbIe pe)KIIMbI Te'IeHIIlI, B npyrHX CJIyqaITX nOJIy'IeHb1 ,fIByX-IIJIII TpeXPIeIIC- 

TbIe CTpyKTypbl. 


